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The mass-energy equation in static gravitational fields is shown to be E = g44mc 2, 
which agrees with the expression E=moc2(dx~/ds)~ for the energy in a 
gravitational field possessing a timelike Killing vector (. For the Schwarzschild 
field this leads to E~ -~ mo cz + ½too v2 - kmoM/r. For the Reissner-Nordstr6m 
field an additional term describing the interaction between the mass and the 
charge is found to be 2~rkmoQ2/c2r ~. In the Kerr-Newman case more terms are 
found due to the central rotating gravitating mass. 

1. I N T R O D U C T I O N  

The famous mass-energy equation of  Einstein, E = rnc 2, in the special 
theory of relativity is associated with force F in the following manner :  

rp rp d / dx  ) dx  = - mo c2 W =  JpoFdx = Jpo-d~ [ m -  ~ mc  2 

E = W +  mo c2 = m c  2 

(1) 

(2) 

where the force acts on the particle to accelerate it. However, according to 
the general theory of  relativity, a gravitating system must be described in 
terms of  a Riemannian geometry defined by the metric tensor g~,,. The 
expression of  F must  then be so generalized to accommodate  the g~, and 
their derivatives as to properly fit in with general relativity. The mass-energy 
equation thus obtained may therefore contain g~, or their derivatives as its 
components .  Equation (2) in flat space is the limiting case of  this general 
mass-energy equation. Moreover,  since gravity is a metric p h e n o m e n o n  in 
general relativity, it may  also be expected that the classical gravitat ional  
potential energy will be embedded in this general mass-energy equation.  
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2. NONVANISHING MINKOWSKI ACCELERATION VECTOR 

The gravitational field equations for nonempty space are 

1 ~ - 8 ~ r k  T~ . ( 3 )  
a '~p ~-- R/Lv - -  -~gP" R = c2 

with T ~ denoting the energy-momentum tensor of all kinds of energy 
content in the space except the gravitational one. When only the noninter-  
acting incoherent matter is involved, the energy-momentum tensor is mere ly  
the matter tensor: 

dx~ dx ~ 
T~  = M ~  = Po ds ds (4) 

The trajectory of a material point in this matter field is then determined by 
the geodesic equations 

T~'~; v = M~;  v = pof ~ = 0  (5) 

D ( dx ~' ) d2x ~ ( l~ } dx~ dx ~ 
: 

-As = - d 7  + ds 
(6) 

where D/ds is the covariant derivative with respect to the affine parameter  
s, and the f~ is called the Minkowski acceleration vector. If, however, o ther  
kinds of force field are present, they must be included in the energy- 
momentum tensor T ~ to make it complete. Setting the divergence of the 
complete energy-momentum tensor equal to zero will give the correct  
equations of motion. Denoting all kinds of nongravitational field other than  
the matter field by S ~'~, we have 

T ~'~ = M ~ + S ~" (7) 

and, as a consequence of this, 

f .  = - Zs '; (8) 
P0 

A nonvanishing S ~" will not have zero divergence in general since the S ~'" is 
not a complete energy-momentum tensor in itself. Hence the trajectory o f  a 
material particle in the presence of S ~" field is not, generally speaking, given 
by the geodesic equations (5). It is, instead, given by (8). The particle is thus 
subject to the effect of S ~ field, and accelerated. 
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3. E = g44mc 2 IN THE STATIC GRAVITATIONAL FIELDS 

First of all let us take into account only the static gravitational fields 

ds 2 = g44( dx 4 )2 __ gijdxidxj 

i, j = 1 , 2 , 3  (9) 

g4i = gi4 = 0 

x 4 = c t  

g44 and gis being independent of x 4. Dividing the above equation by ds z and 
taking the covariant derivatives with respect to s over both sides, we get 

g4nf4dx 4 - g iJ idx  j = 0  (10) 

where f4 and f i  are given by equation (6). The f4 in equation (10) can be 
further reduced as follows. From the Christoffel 3-index symbols of the 
second kind 

_ (4}=0 ,  4 = o ,  {4, 
44 /j 0x' 

we have, by virtue of equation (6), 

f4__ d2x4 ~g44 dXi dx4 
ds 2 ~_g44 Ox ~ ds ds 

1 . (  (11) 

Classically the force is defined by 

F = d  dx 
dt ( m--~ ) (12) 

In general relativity we must generalize F to include the metric tensor g~,, as 
stated previously. The simplest way is to replace the ordinary derivative 
before the parenthesis in equation (12) by the covariant derivative 
(Sokolnikoff, 1969) 

F j = D [ m d X : l  dx4 (13) 
dt ~ dt ]' m = m° ds 
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This equation can be put in a more convenient form which reads 

m°c2 ( dx  4 - I  ----~- ) fJ  (14)  F J=  

The work done by the generalized force F s in displacing a particle b2¢ a 
distance dx j in the S ~ field is therefore 

w =  fP~FjdxJ= ""~ ' Pl jp~ g, j F  dx j 

which becomes, using equations (10), (11), and (14), 

w l't2 2 ds ,.4 m cz f t2d(  dx4] 
: i t  mo C -~x4 944J dx4 = 0 "tl x g4"4-"~S ] 

Thus 

2 dx4 
W =  moC g44---~- s +const  (15)  

The constant of integration can be determined by noting the fact that f f  = 0 ,  
F j ---0 and consequently W = 0 when the S ~ field vanishes. Hence 

2 dz4 
const = - moC g44"--~- s~'=o 

Substitution back into equation (15) gives 

2 dx4 2 d x 4  
W =  moC g44---~ s ~ ' ~ o - m ° c  g44 ds s, '=o 

(16)  

(17) 

The lost term in equation (17) is the energy of the test particle at infinity:  

2 a x  4 

Eo =moC g44 ds s~'=0 (18)  

As the particle proceeds towards the center of the S ~ field, it gains an 
amount of energy W to arrive at a total energy 

dx 4 I 
E = e o + IV= m°cZg44-';7--az. I]s~-~0 (19)  
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In view of the nearly identical expression of equations (18) and (19), and the 
fact that the S ~" field is arbitrary, we can write the total energy of the 
particle in any static field as 

d x  4 
E = moc-g44---- ~ -  = gn4mc 2 (20) 

whether the S "v field is present or not. Being a function of space coordi- 
d x  4 

nates, the expression of g44--~- s changes as the particle moves towards or 

away from a force field, and the total energy content of that particle 
changes accordingly. In flat space, equation (20) is evidently the mass-energy 
equation of Einstein in special relativity. 

4. E = g44mc  2 EXPANDED IN TAYLOR SERIES 

To get a closer insight into equation (20) we try to expand it in terms of 
the Taylor series, and see what meaning each term will have from the 
view-point of classical mechanics. 

From the metric (9) we get 

dx4)2 _ 1 V 2 dxi dxS (21) 
- ' ~  g44 -- V2//¢2 ' = gij dt dt 

Taking the square root and applying it to the mass-energy equation (20), we 
obtain 

E = mo c2 g44 (22) 
(g44--V21C2) I/2 

where the positive root is adopted since we want this equation to reduce to 
that of special relativity for large radial distances g44~1. The two- 
dimensional Taylor expansion of the function F(X, Y) around the point 
(Xo = 1, ro = o )  is 

r(x,Y)= X 
( X -  y ) l / 2  

1 ( X _ I ) +  1 --1+ ~ ~Y+.- -  (23) 

We have by identifying g44 with X and D2//¢ 2 with Y, and by using equations 
(22) and (23), 

E -~ m o  c2 + ½rot v2 + ½moc2(g44 -- 1) (24) 
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for low velocity. The Schwarzschild metric is of the standard form (9); 
equations (20) and (24) are therefore directly applicable to it. This yields 

1 2 k m o M  
Es = m°c2 + 2 m°v  r (25) 

in which the subscript S stands for the Schwarzschild field. The first atnd 
second terms in (25) are the rest and kinetic energies of the test particle, 
respectively. The third term is the familiar gravitational potential energy of 
Newton. 

In the field of Reissner (1916) and Nordstr/3m (1918), the g44 is given 
by 

4~rkQ2 ( 2 6 )  g ~  = 1 2 k M  -~ c4r 2 
rc 2 

So the total energy of the test particle in this field is 

2TrkmoQ 2 
ER_ N ~ E s + c2r z (27) 

where the E s is given by equation (25). The additional term in equation (27) 
is due to the presence of an electrostatic field; it may therefore be called the 
mass-charge interaction energy between the test particle and the source. 

As to the Kerr-Newman metric (Kerr, 1963; Newman et al., 1965) 
expresses in terms of Boyer-Lindquist (1967) coordinates 

ds 2=  1 -  c2dt z -  y, "sin2Odepcdt 

_ ~.~ sin2 0 dtp2 Z , - - - ~ d r - - -  ~dO 2 (28) 

with the following abbreviations: 

f ~_  2 k M r  _ 4~rkQ 2 
¢2 C4 

]9.. = r 2 + a2cos  20 

A = r ~ + a 2 - - [ 2  

(29a) 

(29b) 

(29c) 

A = ( r  z + a2) z - a2A sin20 (29d) 
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the presence of the cross term (-2a~2/E)sin2Odq~cdt invalidates the as- 
sumption that the metric under consideration is static, i.e., equation (9). To 
remove this term we must thus introduce a new time differential in the 
rotating system. Redefinition of simultaneity (Adler et al., t975) 

af~ sin20 drp (30) cdt* = cdt Z - ~2 

brings equation (28) into the following form: 

ds2 -~ (1 - -~ )c2 (d t* )  2 ~ - ~ - s i n 2 8 d e p 2 - ~ d r Z - E d O  2 (31) 

The line element (31) and equations (20) and (24) state that in the Kerr-  
Newman field the total energy of a test particle measured on the rotating 
frame is 

f~ ~ 2 cdt* 
EK-I¢=(1-- -~  ) m°c ds (32) 

which can be expanded to second order in a / r ,  and reads 

km°MaZc°s20 21rkrn°Q2a2c°s20 (33) 
EK_ N -~ ER_ N + r3 --  r4c2 

with ER_ u given by equation (27). Since the parameter a is a measure of the 
angular momentum per unit mass of the source 

Ma = - 1 j (34) 
C 

J being the angular momentum of the source, we see that rotation of the 
source can create extra potentials of rotation besides the Newtonian one. It 
is noted, however, that these potentials of rotation shown in equation (33) 
vanish in the equatorial plane where 8 = 2" Hence the planetory orbits of 

most of the planets in our solar system are not affected by these rotation 
potentials in the sense of classical mechanics. 

Substituting equation (30) into equation (32), we have 

EK_u = moc z 1---~ ds 

[ d x  4 . dg  3 
m o  c2 t g*'---d- + g,3 ) (35) 



390 Kuo 

where x 3 =  % The term mocZga4dxa/ds can be interpreted as the e n e r g y  
measured in the coordinate time system, and the term g43moc2dx3/ds is due 
to the difference of  measurements in the coordinate time system and the 
rotat ing system. 

In  any geometry endowed with a symmetry  described by a Ki l l ing  
vector field (, mot ion along any geodesic whatsoever leaves constant  the 
scalar product  of  the tangent vector with the Killing vector (Misner et  al., 
1973) 

PK = P~'~, = g~,K P~' 

dx" (36 )  
E = moc2g4~ ds 

The energy in the K e r r - N e w m a n n  field (35) is seen to agree with express ion  
(36) exactly. 
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